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Most of kmeans-type clustering algorithms rely on only intra-cluster compactness, i.e. the dispersions of
a cluster. Inter-cluster separation which is widely used in classification algorithms, however, is rarely
considered in a clustering process. In this paper, we present a new discriminative subspace kmeans-type
clustering algorithm (DSKmeans), which integrates the intra-cluster compactness and the inter-cluster
separation simultaneously. Different to traditional weighting kmeans-type algorithms, a 3-order tensor
is constructed to evaluate the importance of different features in order to integrate the aforementioned
two types of information. First, a new objective function for clustering is designed. To optimize the objec-
tive function, the corresponding updating rules for the algorithm are then derived analytically. The prop-
erties and performance of DSKmeans are investigated on several numerical and categorical data sets.
Experimental results corroborate that our proposed algorithm outperforms the state-of-the-art
kmeans-type clustering algorithms with respects to four metrics: Accuracy, RandIndex, Fscore and Nor-
mal Mutual Information(NMI).
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1. Introduction

Clustering techniques have been used extensively in many
fields in nature [1], such as bioinformatics [2], text organizations
[3], and community detection [4], to name just a few. Clustering
is an unsupervised classification technique that aims at partition-
ing a data set into clusters such that the objects within a cluster
are similar and the objects in different clusters are dissimilar
according to certain pre-defined criteria [5].

The clustering algorithms [6] can be summarized as partition-
ing methods, hierarchical methods, density-based methods, grid-
based methods and model-based methods, etc. The kmeans-type
clustering algorithm is a widely used partitioning methods in
many real-life applications. Many researchers extended the
kmeans algorithms by different types of weighting ways. From
the weighting ways, existing kmeans-type algorithms can be clas-
sified into three categories: (1) No weighting kmeans-type algo-
rithms [7–10], which treat all features equally in the process of
minimizing the dispersions of clusters. Different features, however,
have different discriminative capabilities in real-world applica-
tions. Therefore, different types of feature selection and weighting
methods have been proposed in many clustering processes. (2)
Vector weighting kmeans-type algorithms, which have been
reported in [5,11–15]. (3) Matrix weighting kmeans-type algo-
rithms, the examples of which are proposed in [16–21,3,22,23].
Most of these weighting kmeans-type clustering algorithms only
consider that the objects in the same cluster are similar, i.e. mini-
mizing the dispersions of all the clusters, in a way that the features
are weighted by using different methods.

However, a feature in a cluster may have different discrimina-
tive capabilities when we compare this cluster with other clusters.
For example, there are three clusters (C1, C2 and C3) in Fig. 1 (the
distributions of features are listed in the table). W12 and W13 are
weighting vectors when we compare cluster 1 (C1) with cluster 2
(C2) and cluster 3 (C3), respectively. We can observe that the fea-
tures ‘‘Olympic, sport, chaos, riots’’ have more discriminative capa-
bilities when comparing C1 with C2. In contrast, comparing C1–C3,
the features ‘‘London, England, Beijing, China’’ have more discrim-
inative capabilities. The same features in C1‘‘London, England’’
have different discriminative capabilities when comparing to dif-
ferent clusters, i.e. ‘‘London, England’’ have less discriminative
capabilities in distinguishing C1 and C2, while they have more dis-
criminative capabilities in identifying C1 and C3.

Motivated by the example in Fig. 1, we propose a new kmeans-
type algorithm by integrating the intra-cluster compactness and
the inter-cluster separation with a 3-order tensor weighting
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Fig. 1. An example of three clusters.
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method. A row vector of each slice in the 3-order tensor represents
the weights of a cluster comparing to another cluster. For example,
the vector W12 in Fig. 1 denotes the weights of the features in C1
when comparing to C2. We then propose a new objective function.
The corresponding iterative rules of the algorithm are derived in
theory by optimizing the objective function. The experimental
results show that the new algorithm performs better than other
kmeans-type algorithms. The main contributions of this paper
are twofold:

1. We propose a 3-order tensor weighting method to discriminate
the weights of features when comparing every pair of clusters.

2. We propose kmeans-type clustering algorithm by using the 3-
order tensor weighting method. An objective function of the
algorithm is designed and then we give the updating rules of
the algorithm.

The remaining sections of this paper are organized as follows: a
brief overview of related works on various kmeans-type algorithms
is presented in Section 2. Section 3 introduces our kmeans-type
approach to discriminative subspace clustering. Experiments on
both numerical and categorical data sets are presented in Section 4.
We discuss the properties of our algorithm in Section 5 and con-
clude the paper in Section 6.

2. Related work

Kmeans-type algorithms have been studied extensively in many
years. In this section, we give a brief survey of kmeans-type clus-
tering from two aspects: the algorithms considering only the
intra-cluster compactness and the algorithms integrating both
the intra-cluster compactness and the inter-cluster separation.

2.1. Kmeans-type algorithms using only intra-cluster compactness

Most kmeans-type algorithms attempt to minimize the intra-
cluster compactness to find a partition for a data set. Basic kmeans
minimizes the sum of the squared distances between the empirical
means of the clusters and the objects in the clusters and it equally
treats all the features in the objects in the process of minimization.
Many different ways have been used to extend basic kmeans. In k-
medoids [24] and k-median [25], the means of the clusters in basic
kmeans are replaced by the medoid (the most centrally located
object) and the median, respectively. In order to solve the textual
data clustering problem, many studies have used cosine metric
instead of Euclidean distance, called spherical kmeans [26].

Shamir and Tishby [27] studied the behavior of clustering sta-
bility using kmeans clustering framework based on an explicit
characterization of its asymptotic behavior. This paper concluded
that kmeans-type algorithms do not ‘‘break down’’ in the large
samples, in the sense that even when the sample size goes to infin-
ity and the kmeans-type algorithms becomes stable for any choice
of K. Since the clustering results of the kmeans-type algorithms are
sensitive to the choice of initial centroids, many methods [28,29]
are proposed to overcome this problem. Arthur and Vassilvitskii
proposed kmeans++ [28] which chooses a initial centroid according
to the distances with existing centroids. Another limitation of
kmeans-type algorithms is to require manually tuning the param-
eter K(the number of clusters). For solving this problem, Pelleg
et al. proposed X-means [30] which can automatically find the
number of clusters by optimizing a criterion such as Bayesian
Information Criterion.

The major problem of the kmeans-type algorithms mentioned
above is to treat all features equally in the clustering process. In
fact, the useful clusters in a data set usually occur in a subset of
all the features [5]. To find this type of clustering structure, some
researchers attempt to weight features with different methods
[11,15,5,12]. These kmeans-type algorithms assigns a weight to a
feature in the entire data set.

Subspace clustering algorithms are another types of weighting
algorithms which seek to group objects into clusters in different
subsets of features for different clusters. Subspace clustering algo-
rithms assign a weight to a feature in each cluster. It pursues two
goals simultaneously: finding a subsets of features for each cluster
and partitioning the data set into different clusters from different
subsets of features. In recent years, subspace clustering and feature
weighting have been studied extensively [17,20,21,3,22,23]. Han
et al. proposed attributes-weighting clustering algorithms (AWA)
[21], which assign the bigger weights to the features which have
smaller dispersions and the smaller weights to the features have
larger dispersions for each cluster. Based on AWA [21], Jing et al.
proposed an entropy weighting kmeans (EWkmean) [3], which
minimizes the intra-cluster compactness and maximizes the nega-
tive weight entropy to stimulate more features contributing to the
identification of a cluster. Based on EWkmeans [3], Ahmad and Dey
[31] developed a kmeans-type clustering algorithm for subspace
clustering of mixed numerical and categorical data sets. In a later
study, Chen et al. [22] proposed a feature group weighting method
for subspace clustering of high-dimensional data. To utilize a priori
knowledge in the process of kmeans clustering, Pedrycz et al. [32]
proposed a proximity-based fuzzy clustering which is able to fuse
some constraints that specify an extent to which some pairs of
objects are regarded similar or different.

2.2. Kmeans-type algorithms integrating both intra-cluster
compactness and inter-cluster separation

In order to improve the clustering performance, some research-
ers introduced the information of inter-cluster separation to
kmeans-type algorithms [13,14,33–35,23]. From the schemes of
using the inter-cluster separation, these kmeans-type algorithms
can be classified into two classes. (1) Calculating the distances
between all pairs of objects which belong to different clusters as
inter-cluster separation [13,14,33,34]. The hierarchical clustering
method is used by Soete [13,14] to solve the feature selection prob-
lem. The hierarchical clustering method, however, requires high
computational cost and cannot deal with large scale data set [5].
For overcoming the high computational cost, Makarenkov and
Legendre [33] extended [13] to weight feature for kmeans cluster-
ing. Friedman and Meulman [34] developed the clustering objects
on subsets of features algorithm for subspace clustering. (2) Calcu-
lating the distance between the centroid of each cluster and the
global centroid as inter-cluster separation [35,23]. Wu et al. [35]
introduced the inter-cluster separation to the fuzzy c-means model
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by calculating the distances between the centroids of the clusters
and the global centroid. Inspired the method of [35], Deng et al.
presented an enhanced soft subspace clustering(ESSC) [23] algo-
rithm which is able to balance intra-cluster compactness and
inter-cluster separation. Negative values, however, may be pro-
duced in the membership matrix if the balancing parameter is
large. Moreover, ESSC has three manual input parameters which
is difficult to find an appropriate group of parameters in real
application.

2.3. Characteristic of our kmeans-type algorithm

Our proposed approach is related to the EWkmeans [3] which
employs entropy to control the distribution of the weights. Differ-
ent to EWkmeans that considers only the intra-cluster compact-
ness, our approach introduces a 3-order tensor weight for
synthesizing two clustering cues: the intra-cluster compactness
and the inter-cluster separation.

We have also noticed that ESSC [23] has introduced the inter-
cluster separation into a fuzzy weighting kmeans-type model. ESSC
employs the matrix weighting that make each centroids of the
clusters far away from the global centroid. However, ESSC cannot
suggest the characteristic that a feature in a cluster has different
discriminative capabilities while we compare this cluster to other
clusters. In order to suggest this characteristic, we maximize the
distance of each pair of clusters, instead of the traditional ways
that maximize the distance with the global centroids. Thus, this
paper proposes a 3-order tensor weighting kmeans-type algorithm,
i.e. each cluster has K � 1(K is the number of the clusters) weight-
ing vectors. Each vector denotes a group weights of a cluster while
we compare this cluster to other clusters.

3. Discriminative subspace Kmeans (DSKmeans) clustering
model

In this section, we present a 3-order weighting kmeans-type
approach to discriminative subspace clustering which is able to
utilize intra-cluster compactness (i.e. the information of disper-
sions) and inter-cluster separation (i.e. the distances between dif-
ferent clusters) simultaneously. First, we develop a new objective
function for the model. And then, the corresponding iterative rules
are derived in theory. At last, we give the process of DSKmeans
algorithm.

3.1. Optimization model

Let X ¼ fX1;X2; . . . ;Xng be a set of n objects. Object
Xi ¼ fxi;1; xi;2; . . . ; xi;mg is characterized by a set of m features
(dimensions). The membership matrix U is a n� K binary matrix,
where ui;p ¼ 1 indicates that object i is allocated to cluster p, other-
wise, it is not allocated to cluster p. Z ¼ fZ1; Z2; . . . ; ZKg is a set of K
vectors representing the centroids of K clusters. The weight W is a
3-order tensor, each value wp;q;j in which denotes the importance of
the feature j in cluster p while we compare cluster p to cluster q,
where p – q. The objective function of DSKmeans can be formu-
lated as

PðU;W; ZÞ ¼
XK

p¼1

XK

q¼1
q–p

Xm

j¼1

wp;q;jDp;q;j

þ c
XK

p¼1

XK

q¼1
q–p

Xm

j¼1

wp;q;j logðwp;q;jÞ; ð1Þ

Dp;q;j ¼
Xn

i¼1

ui;p½ðxi;j � zp;jÞ2 � gðzp;j � zq;jÞ2�; ð2Þ
subject toXK

p¼1

ui;p ¼ 1;ui;p 2 f0;1g;

Xm

j¼1

wp;q;j ¼ 1;0 6 wp;q;j 6 1;

8>>>>><>>>>>:
ð3Þ

where c is a parameter that control the distribution of the weight
and parameter g is used as balancing the effect of intra-cluster com-
pactness and inter-cluster separation. In the objective function as
shown in Eq. (1), the first term includes two parts: one is the sum
of dispersions of all the clusters which involves in minimizing the
intra-cluster compactness; the other is the sum of the distances
between centroids of different clusters which involves in maximiz-
ing the inter-cluster separation. The second term is the sum of the
negative weight entropy which is able to adjust the strength of the
incentive for clustering on features. The effect of inter-cluster
separation reduces with the decrease of g value. If g ¼ 0, the
effect of inter-cluster separation vanishes and the DSKmeans
degenerates to EWkmeans. The different weighting vectors of a
cluster when we compare this cluster to the other clusters are equal
when g ¼ 0.

3.2. DSKmeans clustering algorithm

In this subsection, we minimize the objective function P as
shown in Eq. (1) with the constraints of Eq. (3) to obtain the itera-
tive rules of the algorithm. The general method to optimization of P
is to use the partial optimization for U, W and Z. In this method, we
fix two constants of U, W, Z and minimize the objective function P
with respect to the other constant. The following is three theorems
to solve U, W and Z, respectively.

Theorem 1. Let weights cW and centroids bZ be fixed, PðU;cW ; bZÞ is
minimized iff

ûi;p ¼
1; di;p; 6 di;p0 ;p – p0;1 6 p0 6 K;

0; otherwise;

�
ð4Þ

where

di;p ¼
XK

q¼1
q–p

Xm

j¼1

ŵp;q;j½ðxi;j � ẑp;jÞ2 � gðẑp;j � ẑq;jÞ2�: ð5Þ

The proof process of Theorem 1 can be found in [7,8].
Theorem 2. Let membership matrix bU and centroids bZ be fixed,
PðbU ;W; bZÞ is minimized iff

ŵp;q;j ¼ exp �Dp;q;j

c

� ��Xm

j0¼1

exp �
Dp;q;j0

c

� �
; ð6Þ

where Dp;q;j is given in (2).
Proof. We use the Lagrangian multiplier technique to obtain the
following unconstrained minimization problem:

UðW;aÞ ¼
XK

p¼1

XK

q¼1
q–p

Xm

j¼1

wp;q;jDp;q;j þ c
XK

p¼1

XK

q¼1
q–p

Xm

j¼1

wp;q;j logðwp;q;jÞ

�
XK

p¼1

XK

q¼1
q–p

ap;q

Xm

j¼1

wp;q;j � 1

 !
; ð7Þ

where {ap;q} is a matrix containing the lagrange multipliers corre-

sponding to the constraints. If cW ; â are the values of minimizing



Table 1
Six numerical data sets and two categorical data sets.

DataSet No. of features No. of clusters No. of objects

Iris 4 3 150
Glass 9 6 214
Ecoli 5 8 336
Robot2 2 4 5654
Robot4 4 4 5654
GeneCNS34 7129 2 34
Chess 37 2 3196
Molecular 61 2 1535
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UðW;aÞ, its gradient in the weight of features wp;q;j must vanish.
Thus,

@UðcW ; âÞ
@ŵp;q;j

¼ Dp;q;j þ cð1þ log ŵp;q;jÞ � âp;q ¼ 0; ð8Þ

@UðcW ;aÞ
@âp;q

¼
Xm

j¼1

ŵp;q;j � 1 ¼ 0: ð9Þ

From (8), we obtain

ŵp;q;j ¼ exp
�Dp;q;j � cþ âp;q

c

� �
¼ exp

âp;q � c
c

� �
exp

�Dp;q;j

c

� �
: ð10Þ

Substituting(10) into (9), we have

exp
ap;q � c

c

� �Xm

j¼1

exp
�Dp;q;j

c

� �
¼ 1: ð11Þ

It follows that

exp
ap;q � c

c

� �
¼ 1Pm

j¼1 exp �Dp;q;j

c

� � : ð12Þ

Substituting (12) back to (10), we obtain the expression Eq. (6) of
wp;q;j. h
1 http://archive.ics.uci.edu/ml/.
Theorem 3. Let membership matrix bU and weights cW be fixed,

PðbU ;cW ; ZÞ is minimized iff centroids Z satisfies the following
equations

ð1� gÞ
XK

q¼1
q–p

wp;q;j

Xn

i¼1

ui;p � g
XK

q¼1
q–p

wq;p;j

Xn

i¼1

ui;q

264
375zp;j

þ g
XK

q¼1
q–p

wp;q;j

Xn

i¼1

ui;p þwq;p;j

Xn

i¼1

ui;q

 !
zq;j

¼
XK

q¼1
q–p

wp;q;j

Xn

i¼1

ui;pxi;j: ð13Þ

Proof. Given bU and cW , we minimize the objective function as
shown in Eq. (1) with respect to zp;j, the centroid of feature j in
cluster p. We can compute the optimal value of zp;j by setting the

gradient of zp;j to zero, i.e. @PðbU ;bW ;ZÞ
@zp;j

¼ 0. Then, we obtain

@PðbU ;cW ; ZÞ
@zp;j

¼ ð1� gÞ
XK

q¼1
q–p

wp;q;j

Xn

i¼1

ui;p � g
XK

q¼1
q–p

wq;p;j

Xn

i¼1

ui;q

264
375zp;j

þ g
XK

q¼1
q–p

wp;q;j

Xn

i¼1

ui;p þwq;p;j

Xn

i¼1

ui;q

 !
zq;j

�
XK

q¼1
q–p

wp;q;j

Xn

i¼1

ui;pxi;j ¼ 0: ð14Þ

Rearranging the structure of Eq. (14), we can obtain Eq. (13). We
have to solve this equations to gain the values of centroids Z.

However, solving this equations is time-consuming and this
iterative rule cannot apply for categorical data set. For simplifica-
tion and applying for the categorical data set, we choose the
alternative way to compute the centroids, which is

zp;j ¼
Pn

i¼1ûi;pxi;jPn
i¼1ui;p

: ð15Þ
If the feature is categorical, zp;j is the mode of the feature value in
cluster p [36].

In general, we set c and g to positive real values. The DSKmeans
algorithm is an extension of the matrix weighting of EWkmeans [3]
to the 3-order weighting by considering the intra-cluster com-
pactness and inter-cluster separation. The procedure of DSKmeans
can be described as Algorithm 1. h
Algorithm 1. Discriminative subspace kmeans algorithm

Input: X ¼ fX1;X2; . . . ;Xng;K.
Output: U, Z, W.

Initialize: Randomly choose an initial Z0 ¼ Z1; Z2; . . . ; ZK and
weights fwp;q;jg.
repeat

Fixed bZ ;cW , solve the membership matrix U with (4);

Fixed bU ;cW solve the centroids Z with (15);

Fixed bU ; bZ solve the weight W with (6);
until Convergence.
4. Experiment

4.1. Experimental setup

In experiments, the performance of proposed approach is exten-
sively evaluated on eight real-life data sets: six numerical data sets
and two categorical data sets, reported in Machine Learning Repos-
itory.1 The properties of these data sets are described in Table 1. The
benchmark clustering algorithms – basic kmeans(Bkmeans), Bisect-
ing kmeans(BSkmeans) [9], Wkmeans [5], AWA [21], EWkmeans
[3] as well as ESSC [23] are chosen for the performance comparison
with the proposed algorithm. Wherein, basic kmeans(Bkmeans),
Bisecting kmeans(BSkmeans) [9] are no weighting kmeans-type
clustering algorithms, Wkmeans [5] is vector kmeans-type cluster-
ing algorithm and AWA [21], EWkmeans [3] as well as ESSC [23]
are matrix weighting kmeans-type clustering algorithms. Similar to
our DSKmeans, ESSC [23] also considers both the intra-cluster com-
pactness and the inter-clusters. For the Wkmeans, AWA, EWkmean
and ESSC, we choose the optimal parameter values according to
[5,21,3,23].

As we know that the result of the kmeans-type clustering is a
local optimal solution. The clustering result relies on the initial
centroids of clusters. In weighting kmeans-type clustering algo-
rithms, the initial weights also influence the clustering result.
Hence, to compare the performance between DSKmeans and the
existing algorithms, we run all the compared algorithms 100 times
by initializing all the algorithms with the same centroids at each
time. Then, we calculate the average Accuracy, Rand Index, Fscore
and Normal Mutual Information(NMI) of these results.

http://archive.ics.uci.edu/ml/
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Fig. 2. The changing trends of acc, RI, fscore and NMI on numerical data sets.
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4.2. Performance metric

In this paper, to evaluate the performance of our proposed algo-
rithm, we have used four performance metrics including Accuracy
(Acc), RandIndex (RI), Fscore and Normal Mutual Information
(NMI). In this subsection, we briefly introduce the computational
process of these four metrics. Let Cq be the set of the class of data
set(the annotated class) and C0p be the set of the cluster generated
by the clustering algorithm. We calculate the clustering accuracy
as

Acc ¼
PK

i¼1ai

n
ð16Þ

where ap is the number of objects in Cp that are clustered to C0p and
n is the number of objects in the data set. Acc is the percentage of
the objects that are correctly recovered in a clustering result.

Fscore combines the information of precision and recall which
is extensively applied in evaluating the clustering result [3]. The
precision and recall are calculated as

Precision C 0p;Cq

� �
¼ np;q

jC 0pj
; ð17Þ

Recall C 0p;Cq

� �
¼ np;q

jCqj
; ð18Þ

where np;q is the number of the objects of cluster C0p in class Cq. The
Fscore of the cluster C0p and class Cq can be computed as

F C 0p;Cq

� �
¼

2 � P C 0p;Cq

� �
� R C 0p; Cq

� �
P C 0p;Cq

� �
þ R C 0p;Cq

� � : ð19Þ

NMI is an increasingly popular measure of clustering quality [3],
which can be formulated as

NMI ¼
PK

p¼1

PK
q¼1np;q log n�np;q

np�nq

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK

p¼1np log np

n

� � PK
q¼1nq log nq

n

� �r ; ð20Þ

where n is the total number of objects, np; nq and np;q are the num-
bers of objects in clusters C0p, class Cq and both the clusters C0p and
class Cq, respectively. NMI is a measure between 0 and 1. NMI
equals 1 when two partitions are equivalent.

The Rand Index(RI) [5,23] is another metric using to evaluate
the performance of the clustering algorithm, which is defined as
follow

RI ¼ aþ b
NðN � 1Þ=2

; ð21Þ

where a is the number of pairs of data objects having different class
labels and belonging to different clusters; b is the number of pairs of
data objects having the same cluster labels and belonging to the
same clusters; N is the size of the entire data set.

4.3. Numerical data set

4.3.1. Parametric study
Since EWkmeans and DSKmeans have a common parameter c

which is used to control the distribution of weight W, in experi-
ments, we first search the best c according to EWkmeans [3]. Then,
we search best g based on the best value of c gotten with algorithm
EWkmeans. Thus, we can gain the local optimal combination of
parameters c and g. Fig. 2 shows the changing trends of the aver-
age results produced by DSKmeans after running 100 times for six
numerical data sets in different values of g. We can observe that
the results of DSKmeans increase with the increase of the value
of g, and then, to certain value of g, the performance decreases
with the increase of the value of g. When g ¼ 0, the result of DSK-
means is equal to that of EWkmeans.

4.3.2. Results and analysis
In these experiments, we chose the best parameter g of balanc-

ing intra-cluster compactness and inter-cluster separation. We
have also conducted an empirical study to demonstrate the effect
of different settings of parameter g on the results (see Sec-
tion 4.3.1). And the compared algorithms: Wkmeans [5] and
AWA [21] have also a parameter b which is used to tune the
weights of features. In experiments, we also search the best b for
evaluating the performance of the algorithms. Since ESSC [23] is
a fuzzy clustering algorithm, it has a fuzzy index parameter a
except parameters c and g. In experiments, we use the empirical
value for a according the study of the algorithm ESSC [23]. The
average clustering results after running 100 times of seven algo-
rithms in six numerical data sets are shown in Tables 2–7. The val-
ues in brackets are the standard deviations of results produced by
the running the algorithms 100 times. The bolds in the tables rep-
resent that the corresponding algorithm obtains the best result on
the performance metric. From these results, we can observe that
DSKmeans produces better results than the other six algorithms
on all the data sets in overall. For data sets, Ecoli and Robot4, DSK-
means outperforms all other algorithms in all four metrics. In com-
parison to other algorithms, DSKmeans is able to deliver about 10%
Fscore improvement in Ecoli and about 3% Acc improvement in
Robot4. For the other four data sets, DSKmeans performs better



Table 2
The results on Iris.

Bkmeans BSkmeans Wkmeans AWA ESSC EWkmeans DSKmeans

Acc 0.7707(�0.1451) 0.8841(�0.0033) 0.8057(�0.1828) 0.8905(�0.1375) 0.8387(�0.1104) 0.7341(�0.1581) 0.9073(�0.1319)
RI 0.8145(�0.0715) 0.8715(�0.0028) 0.8555(�0.1066) 0.9050(�0.0762) 0.8497(�0.0554) 0.7559(�0.1291) 0.9108(�0.0989)
Fscore 0.8155(�0.0859) 0.8833(�0.0026) 0.8562(�0.1193) 0.9115(�0.0866) 0.8570(�0.0652) 0.7586(�0.1362) 0.9171(�0.1102)
NMI 0.6724(�0.0626) 0.7315(�0.0134) 0.7597(�0.1208) 0.8170(�0.0770) 0.7185(�0.0539) 0.5500(�0.2230) 0.8022(�0.1730)

The parameters: Wkmeans (b ¼ 7); AWA (b ¼ 7); ESSC (c ¼ 0:3;a ¼ 1:2;g ¼ 0:035); EWkmeans (c ¼ 0:3); DSKmeans (c ¼ 0:3;g ¼ 0:035).

Table 3
the results on Glass.

Bkmeans BSkmeans Wkmeans AWA ESSC EWkmeans DSKmeans

Acc 0.4381(�0.0219) 0.4493(�0.0277) 0.4249(�0.0493) 0.4255(�0.0307) 0.4332(�0.0176) 0.4316(�0.0395) 0.4683(�0.0531)
RI 0.6786(�0.0122) 0.6635(�0.0172) 0.6743(�0.0319) 0.5403(�0.0539) 0.6788(�0.0095) 0.6714(�0.0347) 0.5959(�0.0380)
Fscore 0.4837(�0.0244) 0.4792(�0.0234) 0.4745(�0.0497) 0.4591(�0.0591) 0.4814(�0.0196) 0.4754(�0.0430) 0.5237(�0.0582)
NMI 0.3277(�0.0328) 0.3290(�0.0259) 0.3013(�0.0620) 0.2471(�0.0642) 0.3223(�0.0284) 0.3200(�0.0546) 0.3548(�0.0796)

The parameters: Wkmeans (b ¼ 7); AWA (b ¼ 5); ESSC (c ¼ 4;a ¼ 1:2;g ¼ 0:18); EWkmeans (c ¼ 4); DSKmeans (c ¼ 4;g ¼ 0:18).

Table 4
the results on Ecoli.

Bkmeans BSkmeans Wkmeans AWA ESSC EWkmeans DSKmeans

Acc 0.4661(�0.0442) 0.4773(�0.0265) 0.4606(�0.0360) 0.4618(�0.0430) 0.4632(�0.0332) 0.4639(�0.0459) 0.6023(�0.0604)
RI 0.7800(�0.0186) 0.7786(�0.0083) 0.7785(�0.0165) 0.7781(�0.0179) 0.7811(�0.0109) 0.7785(�0.0200) 0.8197(�0.0311)
Fscore 0.5579(�0.0420) 0.5662(�0.0264) 0.5537(�0.0356) 0.5557(�0.0371) 0.5589(�0.0340) 0.5562(�0.0421) 0.6585(�0.0451)
NMI 0.5129(�0.0184) 0.4992(�0.0130) 0.5100(�0.0223) 0.4923(�0.0219) 0.5116(�0.0131) 0.5116(�0.0181) 0.5456(�0.0176)

The parameters: Wkmeans (b ¼ 7); AWA (b ¼ 7); ESSC (c ¼ 3;a ¼ 1:2;g ¼ 0:2); EWkmeans (c ¼ 5); DSKmeans (c ¼ 5;g ¼ 0:2).

Table 5
The results on Robot2.

Bkmeans BSkmeans Wkmeans AWA ESSC EWkmeans DSKmeans

Acc 0.6457(�0.0000) 0.6330(�0.0143) 0.6300(�0.0151) 0.6335(�0.0570) 0.6035(�0.0892) 0.6615(�0.1051) 0.6891(�0.0871)
RI 0.7100(�0.0000) 0.7082(�0.0139) 0.7113(�0.0069) 0.7252(�0.0347) 0.6806(�0.0647) 0.7051(�0.0604) 0.7411(�0.0512)
Fscore 0.6630(�0.0000) 0.6380(�0.0162) 0.6348(�0.0234) 0.6302(�0.0759) 0.6316(�0.0750) 0.6718(�0.0873) 0.6982(�0.0702)
NMI 0.4383(�0.0000) 0.3894(�0.0192) 0.3890(�0.0408) 0.4048(�0.0685) 0.3480(�0.0627) 0.3673(�0.0690) 0.4045(�0.0559)

The parameters: Wkmeans (b ¼ 7); AWA (b ¼ 7); ESSC (c ¼ 1;a ¼ 1:2;g ¼ 0:01); EWkmeans (c ¼ 1); DSKmeans (c ¼ 1;g ¼ 0:01).

Table 6
The results on Robot4.

Bkmeans BSkmeans Wkmeans AWA ESSC EWkmeans DSKmeans

Acc 0.4076(�0.0097) 0.4147(�0.0187) 0.4570(�0.0667) 0.5542(�0.0969) 0.5702(�0.1296) 0.5780(�0.1027) 0.6056(�0.0972)
RI 0.5821(�0.0064) 0.5878(�0.0158) 0.6175(�0.0456) 0.6694(�0.0588) 0.6335(�0.0930) 0.6183(�0.0831) 0.6750(�0.0680)
Fscore 0.4348(�0.0091) 0.4395(�0.0253) 0.4951(�0.0637) 0.5819(�0.0997) 0.6006(�0.1126) 0.6081(�0.0850) 0.6260(�0.0879)
NMI 0.1628(�0.0074) 0.1683(�0.0259) 0.2297(�0.0715) 0.3156(�0.1098) 0.3214(�0.1210) 0.3068(�0.0792) 0.3426(�0.0988)

The parameters: Wkmeans (b ¼ 7); AWA (b ¼ 7); ESSC (c ¼ 2;a ¼ 1:2;g ¼ 0:02); EWkmeans (c ¼ 1); DSKmeans (c ¼ 2;g ¼ 0:02).

Table 7
The results on GeneCNS34.

Bkmeans BSkmeans Wkmeans AWA ESSC EWkmeans DSKmeans

Acc 0.6506(�0.0686) 0.6506(�0.0686) 0.6547(�0.0655) 0.6412(�0.0722) 0.5909(�0.0630) 0.6521(�0.0620) 0.6900(�0.0581)
RI 0.5412(�0.0413) 0.5412(�0.0413) 0.5429(�0.0404) 0.5365(�0.0406) 0.5100(�0.0293) 0.5403(�0.0379) 0.5661(�0.0363)
Fscore 0.6769(�0.0516) 0.6769(�0.0516) 0.6805(�0.0461) 0.6720(�0.0506) 0.6241(�0.0495) 0.6796(�0.0430) 0.7005(�0.0399)
NMI 0.0417(�0.0405) 0.0417(�0.0405) 0.0387(�0.0364) 0.0326(�0.0331) 0.0451(�0.0410) 0.0339(�0.0331) 0.0379(�0.0397)

The parameters: Wkmeans (b ¼ 7); AWA (b ¼ 7); ESSC (c ¼ 1;a ¼ 1:2;g ¼ 1); EWkmeans (c ¼ 1); DSKmeans (c ¼ 1;g ¼ 1).
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than other algorithms in three metrics. In comparison to the exist-
ing algorithms, DSKmeans produces more than 4% Fscore improve-
ment, 2% Acc improvement and 3% Acc improvement on data sets,
Glass, Robot2 and GeneCNS34, respectively. We can also observe
that no weighting algorithms: Basic kmeans and Bisecting kmeans
have smaller standard deviations of results than that of weighting
approaches: Wkmeans, AWA, EWkmeans, ESSC and DSKmeans in
most of data sets.

4.3.3. Feature weighting
In our proposed algorithm, a feature in a cluster has K � 1 val-

ues of weights when we compare this cluster to the other K � 1
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Fig. 3. The weights of the features in cluster 1 on data set Ecoli when cluster 1
compares to other seven clusters.
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Fig. 4. The changing trends of acc, RI, fscore and NMI on categorical data sets.
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clusters. These values represent the different discriminative capa-
bilities of a feature when we compare this cluster to other K � 1
clusters. Fig. 3 is an example of feature weights of cluster 1 on data
set Ecoli. There are five features and eight clusters on data set Ecoli.
Fig. 3 shows the weights of features in cluster 1 while we compare
cluster 1 to the other seven clusters. Each block represents the
weights of a feature. We can observe that a feature in cluster 1
has different values of weights while we compare cluster 1 to dif-
ferent clusters. For example, feature 1 in cluster 1 has less discrim-
inative capability when cluster 1 is compared to cluster 2,
however, it has more discriminative capability when cluster 1 is
compared to cluster 7. This result suggests that the inter-cluster
separation is able to effect the distribution of weights and improve
the clustering performance.

4.4. Categorical data set

4.4.1. Parametric study
In order to study the influence of the parameters to perfor-

mance of algorithms, we also search the best c for according to
Table 8
The results on Chess.

Bkmeans BSkmeans Wkmeans

Acc 0.5499(�0.0344) 0.5499(�0.0344) 0.5501(�0.0347)
RI 0.5072(�0.0091) 0.5072(�0.0091) 0.5073(�0.0092)
Fscore 0.5808(�0.0288) 0.5808(�0.0288) 0.5809(�0.0289)
NMI 0.0121(�0.0151) 0.0121(�0.0151) 0.0122(�0.0151)

The parameters: Wkmeans (b ¼ 7); AWA (b ¼ 7); EWkmeans (c ¼ 1); DSKmeans (c ¼ 1;

Table 9
The results on Molecular.

Bkmeans BSkmeans Wkmeans

Acc 0.5440(�0.0292) 0.5440(�0.0292) 0.5431(�0.0289)
RI 0.5052(�0.0070) 0.5052(�0.0070) 0.5050(�0.0072)
Fscore 0.5466(�0.0266) 0.5466(�0.0266) 0.5453(�0.0269)
NMI 0.0084(�0.0104) 0.0084(�0.0104) 0.0079(�0.0106)

The parameters: Wkmeans (b ¼ 7); AWA (b ¼ 7); EWkmeans (c ¼ 10); DSKmeans (c ¼ 1
EWkmeans [3]. And then, we fix the parameter c and run the Algo-
rithm 100 times with different parameter g. Fig. 4 shows the
changing trends of the average results produced by DSKmeans on
two categorical data sets with different values of g. Similar to the
numerical data sets, the results increase with the increment of
the value of g at the beginning, and then, to the certain value of
g, the results begin to reduce with the increase of the value of g.
4.4.2. Results and analysis
To further investigate the performance of the DSKmeans, we

have evaluated DSKmeans in two categorical data sets. Since ESSC
[23] does not give computational formulation to categorical data
sets, we do not compare DSKmeans to ESSC in this two data sets.
Similar to the numerical data sets, we also search the best param-
eters for all the algorithms. Tables 8 and 9 show the average clus-
tering results of six algorithms in two categorical data sets. The
results are also produced by running the Algorithms 100 times
with different initial centroids. The values in brackets are the stan-
dard deviations. Likewise, the bolds in the tables represent that the
corresponding algorithm obtains the best result on the performance
metric. DSKmeans performs better than the other five algorithms
in overall. Especially, the data set Molecular, DSKmeans obtains
7% Acc improvement, 10% RI improvement, 8% Fscore improve-
ment and 13% NMI improvement comparing to the second best
algorithms, EWkmeans. Since two data sets are only two clusters,
the results of basic kmeans and bisecting kmeans are equal.
5. Discussion

From the results in Section 4, DSKmeans outperforms the com-
pared kmeans-type algorithms: basic kmeans, bisecting kmeans,
Wkmeans, AWA, EWkmeans and ESSC in terms of four evaluation
measures: Acc, RI, Fscore and NMI in overall. These results suggest
that the clustering performance can be improved by effectively uti-
lizing the inter-cluster separation.

Comparing to traditional kmeans-type algorithms that utilize
only the information of the intra-cluster, DSKmeans is able to inte-
grate the intra-cluster and inter-cluster information simulta-
neously. We introduce a parameter g to balance the effect of two
parts. Other algorithms are also able to employ intra-cluster com-
pactness and inter-cluster separation, like ESSC [23]. Different to
ESSC, DSKmeans uses a 3-order tensor to weight the features,
which is more effective to express the characteristic that a feature
in a cluster has different discriminative capabilities when we com-
pare this cluster to the other clusters in real-world applications.
AWA EWkmeans DSKmeans

0.5270(�0.0149) 0.5438(�0.0266) 0.5571(�0.0398)
0.5017(�0.0024) 0.5051(�0.0056) 0.5095(�0.0133)
0.6467(�0.0342) 0.5965(�0.0436) 0.5812(�0.0330)
0.0084(�0.0100) 0.0130(�0.0149) 0.0186(�0.0304)

g ¼ 0:2).

AWA EWkmeans DSKmeans

0.6148(�0.0539) 0.7102(�0.0653) 0.7867(�0.1292)
0.5318(�0.0358) 0.5966(�0.0441) 0.6973(�0.1436)
0.6562(�0.0280) 0.7090(�0.0356) 0.7899(�0.1181)
0.1631(�0.0646) 0.2876(�0.0838) 0.4187(�0.1961)

0;g ¼ 0:2).
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6. Conclusion

In this paper, we have presented a new kmeans-type algorithm
by integrating intra-cluster compactness and inter-cluster separa-
tion with a 3-order tensor weighting. This work involves the fol-
lowing aspects: (1) A new objective function is proposed; (2) The
corresponding updating rules are derived by optimizing the objec-
tive function; and (3) Extensive experiments are conducted to eval-
uate the performance of the new algorithm based on four
evaluation metrics: Acc, RI, Fscore and NMI. The results demon-
strate that the extending algorithm is more effective than the
state-of-the-art algorithms.
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